Synthetic Studies towards Complex Diterpenoids. Part 18.1 Total Synthesis of (\pm)-Isopisiferin and the Related Compounds

Soumitra Deb, Gopa Bhattacharjee, and Usha Ranjan Ghatak*
Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India

Abstract

A simple convergent and general method has been developed for the synthesis of (\pm)-isopisiferin (1c), a rearranged abietane diterpene, having a hexahydrodibenzo[a, $d]$ cycloheptene ring system, and the related model systems (1a) and (1b), through the respective enolisable tricyclic ketone mixtures (12c) and (13c), (12a) and (13a), and (12b) and (13b), obtained from the corresponding easily accessible 2 -arylethyl-3,3-dimethylcyclohexanones (7c), (7a), and (7b). Demethylation of the styrenoid ethers (15b) and (15c) under acid conditions gave the tetracyclic dienones (17b) and (17c) through $\mathrm{Ar}_{1}-5$ cyclisation.

The recent structural elucidation ${ }^{2,3}$ of isopisiferin (1c), pisiferanol (2), and a number of related compounds, isolated from the seeds of Chamaecyparis pisifera (Cupressaceae), along with the earlier reported phenols, pisiferin (3a) ${ }^{4}$ and barbatusol (3b), ${ }^{5}$ represent an interesting group of rearranged $9(10 \rightarrow$ 20)-abeo-abieta-8,11,13-triene diterpenoids. Recently, the total syntheses of (\pm)-pisiferin ($\mathbf{3 a})^{6}$ and $(\pm \text {)-barbatusol (} \mathbf{3 b})^{7}$ have been reported. We present here the first total synthesis of (\pm)isopisiferin (1c) and the related model compounds (1a) and (1b) by a simple and general convergent route.

(1) a; $R^{1}=R^{2}=H$
b; $\mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=\mathrm{H}$
c; $\mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=\mathrm{Pr}^{\mathrm{j}}$

(2)

(3) $a ; R=H$
b; $\mathrm{R}=\mathrm{OH}$
\dagger The stereochemistry depicted in the major and the minor epimers (12) and (13) is based on analogy with the isomeric enolisable tricyclic ketone (i), ${ }^{6}$ where the cis-form predominates.

(i)

Results and Discussion

The gem-dimethylcyclohexanones (7a), ${ }^{8}(\mathbf{7 b}),{ }^{8}$ and (7c), the key intermediates, were obtained in excellent yields by our recently developed procedure ${ }^{8}$ of conjugate addition of a methyl group to the respective cyclohexenones (6a), (6b), and (6c) (Scheme 1). The previously unknown cyclohexenone (6 cc) was prepared by alkylation ${ }^{9}$ of Hagemann's ester (4) with the bromide (5), ${ }^{10}$ followed by alkaline hydrolytic decarboxylation. The ketones (7a), (7b), and (7c) were smoothly transformed to the respective alkenes (8a), (8b), and (8c) by Wittig reaction under forcing conditions. ${ }^{11}$ Hydroboration of each of the alkenes (8a), (8b), and (8c), followed by oxidation ${ }^{12}$ with alkaline hydrogen peroxide gave inseparable stereoisomeric mixtures of the corresponding alcohols (9a), (9b), and (9c). Each of these mixtures on further oxidation with Jones reagent ${ }^{13}$ gave epimeric mixtures of the respective acids (10a), (10b), and (10c) in moderate to good yields, which were characterised as their respective methyl esters (11a), (11b), and (11c).

The cyclisation of the epimeric mixture of the acid (10a) with polyphosphoric acid (PPA) at $80-85^{\circ} \mathrm{C}$ gave a solid stereoisomeric mixture of the cis- and trans-ketones (12a) and (13a) in a ratio of $c a .82: 16$ (GLC) in 95% yield. On recrystallisation the mixture readily afforded the major epimer (12a). Equilibration of the above mixture or the pure cis-ketone (12a) with methanolic sodium methoxide led to a ca. 5:1 mixture of (12a) and (13a). On repeating the cyclisation under identical conditions with PPA each of the epimeric mixture of the acids ($\mathbf{1 0 b}$) and ($\mathbf{1 0 c}$) led to the respective cis- and trans-ketones (12b) and (13b), and (12c) and (13c) in 75 and 69% yields respectively in ca. 5:1 and ca. 4:1 $\left({ }^{1} \mathrm{H}\right.$ NMR) ratios. While the major epimer $\mathbf{(1 2 b)} \dagger$ from the aforementioned mixture could be separated by chromatography, (12c) could not be obtained in pure form. Reduction of the epimeric ketone mixtures (12a-c) and (13a-c) with sodium borohydride and dehydration of the crude alcohols (14a-c) with potassium hydrogen sulphate ${ }^{14}$ gave the respective styrenes ($15 a-\mathrm{c}$) in excellent yield.
Not surprisingly, ${ }^{\text {s, }}$ our initial investigations of the demethylation of the model styrenoid ether ($\mathbf{1 5 b}$) with the acidic reagents $\mathrm{Me}_{3} \mathrm{SiCl}-\mathrm{NaI}$ in acetonitrile ${ }^{15}$ or $\mathrm{BBr}_{3}-\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{9}$ under various conditions led to many uncharacterisable mixtures of products. When (15b) was subjected to demethylation with $\mathrm{AlCl}_{3}-\mathrm{EtSH}^{16}$ at room temperature the dienone (17b) was isolated in 75% yield. The same product was also formed in an excellent yield by direct treatment of the epimeric alcohols (14b) under similar conditions. The structure of the dienone (17b) was assigned from its elemental analysis and spectral data (see Experimental section). As expected, exposure

(9)

(11)

(6)-(15) $a ; R^{1}=R^{2}=H$
$\mathbf{b} ; \mathbf{R}^{\mathbf{1}}=\mathbf{O M e}, \mathbf{R}^{2}=\mathbf{H}$
$\mathbf{c} ; \mathbf{R}^{\mathbf{1}}=\mathbf{O M e}, \mathbf{R}^{2}=\mathbf{P r}^{\mathbf{i}}$

Scheme 1. Reagents: i, $\mathrm{Bu}^{\prime} \mathrm{OK}-\mathrm{Bu}^{+} \mathrm{OH}, \mathrm{H}^{+}$; ii, $\mathrm{KOH}-\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}, \mathrm{H}^{+}$; iii, $\mathrm{LiMe}_{2} \mathrm{Cu}-\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}-\mathrm{Et}_{2} \mathrm{O}$; iv, sodium t-pentoxide- $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{MeI}^{-}-$ toluene; $\mathbf{v}, \mathrm{B}_{2} \mathrm{H}_{6}$-tetrahydrofuran; vi, $\mathrm{NaOH}-\mathrm{H}_{2} \mathrm{O}_{2}$; vii, Jones reagent; viii, $\mathrm{CH}_{2} \mathrm{~N}_{2}-\mathrm{Et}_{2} \mathrm{O}$; ix, PPA; $\mathrm{x}, \mathrm{NaBH}_{4}-\mathrm{EtOH} ; \mathrm{xi}, \mathrm{KHSO}_{4}$ (heat).
Ratio of (12) to (13); a; ca. 5:1; b, ca. 5:1; c, ca. 4:1.

* It was reported ${ }^{6}$ that the alcohol (ii) possessing an equatorial hydroxy group was normally demethylated with $\mathrm{AlCl}_{3}-\mathrm{EtSH}$ to give the diol (iii), while under the same conditions, the epimer (iv) possessing an axial hydroxy group was easily dehydrated by antiperiplanar elimination to give pisiferin methyl ether which on demethylation and subsequent Ar_{1} 5 cyclisation of the resulting pisiferin (3a) gave the dienone (17c) via the carbocation (16c) (Scheme 2).

(ii) $R=M e$

(iv)

Scheme 2. Reagents: i, EtSH-AlCl ${ }_{3}-\mathrm{CH}_{2} \mathrm{Cl}_{2} ;$ ii, NaSEt -DMF (heat); iii, $\mathrm{Ac}_{2} \mathrm{O}$-pyridine; iv, $\mathrm{LiAlH}_{4}-\mathrm{Et}_{\mathbf{2}} \mathrm{O}$.
of the epimeric alcohols (14c) or the styrenoid ether (15c) to $\mathrm{AlCl}_{3}-\mathrm{EtSH}$ gave the known ${ }^{6}$ tetracyclic dienone (17c) in excellent yield, as reported in the attempted demethylation of (\pm)-pisiferin methyl ether under similar conditions.

The facile formation of the tetracyclic dienones (17b) and (17c) in the acid-catalysed deprotection of the respective O methyl ethers of the benzyl alcohols (14b) and (14c)* via the alkenes (15b) and (15c) (or the hydride transfer of the resulting benzylic cations arising from E_{1}-elimination) possibly proceeds through the respective phenols via the carbocations (16b) and (16c) through an $\mathrm{Ar}_{1}-5$ cyclisation ${ }^{17}$ (Scheme 2).
Deprotection of the O-methyl ether (15b), however, proceeded smoothly with NaSEt in boiling dimethylformamide (DMF) ${ }^{18}$ to give the crude phenol (1b) which was characterised via the corresponding acetate (18b). Under identical conditions, (15c) gave the crude phenol (1c) in 95% yield which was directly converted to the acetate (18c), with IR and ${ }^{1} \mathrm{H}$ NMR spectra identical with those of natural isopisiferin acetate. ${ }^{2}$ Finally, deacetylation of the acetate (18c) with LiAlH_{4} regenerated (\pm)-isopisiferin (1c), the UV, IR, and ${ }^{1} \mathrm{H}$ NMR data of which are consonant with the reported ${ }^{2}$ values (see Experimental section). Since natural isopisiferin has already been converted ${ }^{3}$ to pisiferanol (2), the present work also represents a formal total synthesis of this diterpene.

In conclusion, in the present work a simple convergent and general synthetic route has been developed for the key tricyclic systems incorporating the skeletal structure of the newly discovered $9(10 \rightarrow 20)$-abeo-abieta-8,11,13-triene diterpenoids.

Experimental

The compounds described are all racemates. M.p.s and b.p.s are not corrected. UV spectra were recorded on a Beckman DU spectrophotometer for solutions in 95% ethanol. IR spectra of
solids (KBr) and liquids (film) were recorded on a Perkin-Elmer model PE 298 instrument. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 100 MHz (if specified) on a Jeol FX-100 spectrometer or at 200 MHz on an XL-200 spectrometer for solutions in CDCl_{3} with SiMe_{4} as internal standard. Analytical GLC was performed on a Shimadzu GC-9A model with a flame-ionisation detector employing a $1.5 \% \mathrm{OV}-17$ ($6.5 \mathrm{ft} \times 0.25 \mathrm{in}$) column with N_{2} as the carrier gas. Column chromatography was performed on neutral alumina (Brockmann Grade 1, of BDH, India) or silica gel [Glaxo Laboratories (India) Ltd.]. Petroleum and light petroleum refer to fractions of b.p. $60-80$ and $40-60^{\circ} \mathrm{C}$, respectively. Ether refers to diethyl ether. Elemental analyses were performed by Mr. P. P. Bhattacharya of this laboratory.

2-(3-Isopropyl-4-methoxyphenethyl)-3-methylcyclohex-2enone (6 c).-This compound was prepared by adopting a general method ${ }^{9}$ developed in this laboratory. Hagemann's ester (4) ($7.8 \mathrm{~g}, 0.043 \mathrm{~mol}$) was alkylated with the bromide (5) ${ }^{10}$ $(9.9 \mathrm{~g}, 0.039 \mathrm{~mol})$ in the presence of $\mathrm{Bu}^{1} \mathrm{OK}$ [prepared from potassium metal ($1.68 \mathrm{~g}, 0.043 \mathrm{~mol}$)] in $\mathrm{Bu}^{1} \mathrm{OH}$ to afford the alkylation product, ethyl 3-(3-isopropyl-4-methoxyphenethyl)-2-methyl-4-oxocyclohex-2-enecarboxylate ($11.38 \mathrm{~g}, 83 \%$), as an oil, b.p. $200-210^{\circ} \mathrm{C}(0.08 \mathrm{mmHg})$ (Found: C, 73.6; H, 8.7. $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{4}$ requires C, $73.7 ; \mathrm{H}, 8.4 \%$); $v_{\text {max }} 1735$ (ester) and $1670 \mathrm{~cm}^{-1}$ (α, β-unsaturated ketone); $\lambda_{\max } 228.8 \mathrm{~nm}(\log \varepsilon 4.29)$; $\delta 1.20\left(6 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}, \mathrm{CH} \mathrm{Ce}_{2}\right), 1.28(3 \mathrm{H}, \mathrm{t}, J 8 \mathrm{~Hz}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.45-2.40(7 \mathrm{H}, \mathrm{m}), 1.82(3 \mathrm{H}, \mathrm{s}$, vinyl Me), $2.50-$ $\left.2.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right), 3.29(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe})_{2}\right), 3.80(3 \mathrm{H}, \mathrm{s}$, $\mathrm{ArOMe}), 4.22\left(2 \mathrm{H}, \mathrm{q}, J 8 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 6.78(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}$, 5-ArH), and 6.92-7.06 ($2 \mathrm{H}, \mathrm{m}, 2$ - and $6-\mathrm{ArH}$).

The foregoing keto ester ($10.58 \mathrm{~g}, 0.029 \mathrm{~mol}$) was refluxed with a solution of $\mathrm{KOH}(10.34 \mathrm{~g}, 0.18 \mathrm{~mol})$ in water $(10 \mathrm{ml})$ and EtOH (90 ml) under N_{2} for 14 h . The cooled reaction mixture was acidified with $6 \mathrm{~m}-\mathrm{HCl}$. The usual work-up followed by distillation afforded the enone (6 c) $(5.48 \mathrm{~g}, 65 \%)$, b.p. $172^{\circ} \mathrm{C}(0.2$ mmHg) (Found: $\mathrm{C}, 79.8 ; \mathrm{H}, 9.3 . \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{2}$ requires $\mathrm{C}, 79.7$; H , 9.15%); $v_{\text {max }} 1670 \mathrm{~cm}^{-1}$ (α, β-unsaturated ketone); $\lambda_{\text {max }} 229.6 \mathrm{~nm}$ $(\log \varepsilon 4.24) ; \delta 1.18\left(6 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}, \mathrm{CH} M e_{2}\right), 1.68(3 \mathrm{H}, \mathrm{s}$, vinyl $\mathrm{Me}), 1.84-2.04(2 \mathrm{H}, \mathrm{m}), 2.19\left(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}\right.$, allylic $\left.\mathrm{CH}_{2}\right), 2.42(2$ $\left.\mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \mathrm{COCH}_{2}\right), 2.55(4 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.32\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}_{2}\right)$, $3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}), 6.78(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, 5-\mathrm{ArH})$, and $6.96-7.24$ ($2 \mathrm{H}, \mathrm{m}, 2-\mathrm{and} 6-\mathrm{ArH}$).

2-(3-Isopropyl-4-methoxyphenethyl)-3,3-dimethylcyclohexanone (7c).-This compound was prepared adopting a general procedure. ${ }^{8}$ To a stirred suspension of $\mathrm{CuI}(5 \mathrm{~g}, 26.21$ mmol) in dry ether (25 ml) under N_{2} at $-25^{\circ} \mathrm{C}$ was added MeLi in ether ($37 \mathrm{ml}, 1.4 \mathrm{~m} ; 52.4 \mathrm{mmol}$). The resulting yellow suspension was cooled to $-50^{\circ} \mathrm{C}$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(3.2 \mathrm{ml}, 26.2$ mmol) was added. After 5 min the cyclohexenone (6 c) (2.5 g , $8.74 \mathrm{mmol})$ in ether (15 ml) was added dropwise and the mixture stirred at $-30^{\circ} \mathrm{C}$ for 15 min . Additional $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(3.2 \mathrm{ml}, 26.2$ mmol) was added and stirring continued at $-30^{\circ} \mathrm{C}$ for 1 h . The mixture was allowed to warm to $0^{\circ} \mathrm{C}$ and then quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. Work-up, followed by chromatography (neutral alumina) afforded the cyclohexanone (7c) $(2.0 \mathrm{~g}, 77 \%)$ as an oil, b.p. $150^{\circ} \mathrm{C}(0.05 \mathrm{mmHg})$ (Found: C, 79.6; H, 10.2. $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{2}$ requires C, $79.4 ; \mathrm{H}, 10.0 \%$); $v_{\max } 1710 \mathrm{~cm}^{-1}$ (CO); δ 0.76 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $1.00(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.20(6 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}, \mathrm{CHMe})_{2}$), 1.48-2.74 ($11 \mathrm{H}, \mathrm{m}$), $3.32\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}_{2}\right.$), $3.80(3 \mathrm{H}, \mathrm{s}$, ArOMe), $6.79(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, 5-\mathrm{ArH})$, and $6.94-7.06(2 \mathrm{H}, \mathrm{m}, 2-$ and $6-\mathrm{ArH}$).

3,3-Dimethyl-1-methylene-2-phenethylcyclohexane (8a).-A suspension of methyl(triphenyl)phosphonium iodide (18.4 g , 45.63 mmol) in toluene (2 ml) and a toluene solution of freshly prepared sodium t-pentoxide (45.63 ml of 1 m solution) was stirred at room temperature ($\sim 25^{\circ} \mathrm{C}$) for 20 min . The ketone
(7a) ($3.5 \mathrm{~g}, 15.21 \mathrm{mmol}$) in toluene (5 ml) was added dropwise, the mixture refluxed for 2 h , the reaction quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture extracted with ether. The extract was washed with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and water and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation yielded an oil which was immediately filtered through silica gel with ether-petroleum ($1: 19$). The eluant was evaporated to give an oil $(3.20 \mathrm{~g})$ which was dissolved in petroleum (10 ml). Methyl iodide (3 ml) was added and the mixture set aside at room temperature for 1 h . The precipitated methyl(triphenyl)phosphonium iodide was filtered off and the filtrate concentrated in vacuo to give the pure alkene (8a) ($3.15 \mathrm{~g}, 91 \%$), b.p. $130^{\circ} \mathrm{C}(0.1 \mathrm{mmHg})$ (Found: C, 89.1; $\mathrm{H}, 10.7 . \mathrm{C}_{17} \mathrm{H}_{24}$ requires C, 89.4; H, 10.6\%); $v_{\text {max }} 1640$ $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{C}) ; \delta 0.82(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.90(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.07-2.8(11 \mathrm{H}$, $\mathrm{m}), 4.66(1 \mathrm{H}, \mathrm{m})$ and $4.86(1 \mathrm{H}, \mathrm{m})\left(\mathrm{C}=\mathrm{CH}_{2}\right)$, and $7.12-7.36(5 \mathrm{H}$, m, ArH).

2-(4-Methoxyphenethyl)-3,3-dimethyl-1-methylenecyclohexane (8b).-The ketone (7b) ($2.55 \mathrm{~g}, 9.78 \mathrm{mmol}$) was converted, in the same way as just described, into the alkene (8b) which was obtained as an oil $(2.23 \mathrm{~g}, 88 \%)$, b.p. $130-135^{\circ} \mathrm{C}(0.1$ mmHg) (Found: C, 83.9; H, 9.8. $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}$ requires $\mathrm{C}, 83.7 ; \mathrm{H}$, 10.1%); $v_{\text {max }} 1645 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) ; \delta(100 \mathrm{MHz}) 0.80(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, 0.88 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 1.12-2.76 (11 H, m), 3.76 ($3 \mathrm{H}, \mathrm{s}$, ArOMe), 4.62 $(1 \mathrm{H}, \mathrm{m})$, and $4.82(1 \mathrm{H}, \mathrm{m})\left(\mathrm{C}=\mathrm{CH}_{2}\right), 6.80(2 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, 3-$ and $5-\mathrm{ArH})$, and $7.08(2 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, 2-$ and $6-\mathrm{ArH})$.

2-(3-Isopropyl-4-methoxyphenethyl)-3,3-dimethyl-1methylenecyclohexane (8c).-Compound (8c) was obtained in 91% yield from the ketone (7c), as an oil, b.p. $150^{\circ} \mathrm{C}(0.02$ mmHg) (Found: C, 83.95; H, 11.0. $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}$ requires C, 83.9; H , 10.7%); $v_{\text {max }} 1645 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) ; \delta 0.83(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.91(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 1.20\left(6 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}, \mathrm{CHMe} e_{2}\right), 1.40-2.68(11 \mathrm{H}, \mathrm{m}), 3.32(1$ $\mathrm{H}, \mathrm{m}, \mathrm{CHMe} \mathrm{Me}_{2}$), $3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}), 4.66(1 \mathrm{H}, \mathrm{m})$ and $4.87(1$ $\mathrm{H}, \mathrm{m})\left(\mathrm{C}=\mathrm{CH}_{2}\right), 6.80(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, 5-\mathrm{ArH})$, and $6.94-7.10(2 \mathrm{H}$, $\mathrm{m}, 2$ - and 6-ArH).
trans- and cis-(3,3-Dimethyl-2-phenethylcyclohexyl)methanol (9a).-Diborane gas [prepared from $\mathrm{NaBH}_{4}(4.07 \mathrm{~g}, 106 \mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(16.3 \mathrm{ml}, 130 \mathrm{mmol})$ in diglyme $\left.(15 \mathrm{ml})\right]$ was passed through a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of the alkene (8a) $(3.0 \mathrm{~g}$, 13.1 mmol) in dry tetrahydrofuran (THF) (15 ml) for 2 h under a continuous stream of N_{2}. The cooled mixture was then carefully decomposed with water $\left(10-15^{\circ} \mathrm{C}\right)$ and added to 3 m aqueous $\mathrm{NaOH}(45 \mathrm{ml})$. To the well-stirred cooled $\left(10-15^{\circ} \mathrm{C}\right)$ mixture, $\mathrm{H}_{2} \mathrm{O}_{2}(26 \mathrm{ml} ; 30 \% \mathrm{v} / \mathrm{v})$ was added dropwise. Stirring was continued for an additional 30 min , further $\mathrm{H}_{2} \mathrm{O}_{2}(13 \mathrm{ml})$ was added, and the mixture set aside overnight. The mixture was then extracted with ether and the extract washed with water and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation afforded the alcohol (9a) (3.17 g, 98%) as an oil, as a ca. 1:2 epimeric mixture (${ }^{1} \mathrm{H}$ NMR), b.p. $180^{\circ} \mathrm{C}(0.1 \mathrm{mmHg})$ (Found: C, $82.55 ; \mathrm{H}, 109$. Calc. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}: \mathrm{C}, 82.9 ; \mathrm{H}, 10.6 \%$); $v_{\text {max }} 3340 \mathrm{br} \mathrm{cm}^{-1}(\mathrm{OH}) ; \delta 0.78$ and 0.88 (each $\mathrm{s}, \mathrm{CMe}_{2}$, minor epimer), 0.92 and 0.96 (each s , CMe_{2}, major), $1.06-2.20(10 \mathrm{H}, \mathrm{m}), 2.40-2.88(2 \mathrm{H}, \mathrm{m}), 3.40$ and 3.46 (each s, OCH_{2}, minor and major, respectively), and 7.087.76 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).
trans- and cis-[2-(4-Methoxyphenethyl)-3,3-dimethylcyclohexyl]methanol (9b).-As in the foregoing experiment, the alkene (8b) gave the alcohol (9b) (94%) as an oil, as a ca. 1:2 epimeric mixture (${ }^{1} \mathrm{H} N \mathrm{NR}$), b.p. $210^{\circ} \mathrm{C}(0.06 \mathrm{mmHg})$ (Found: C, 78.6; $\mathrm{H}, 9.8$. Calc. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2}$: C, $78.2 ; \mathrm{H}, 10.2 \%$); $v_{\text {max }}$ $3400 \mathrm{br} \mathrm{cm}^{-1}(\mathrm{OH}) ; \delta(100 \mathrm{MHz}), 0.78$ and 0.86 (each s, CMe_{2}, minor epimer), 0.90 and 0.98 (each $\mathrm{s}, \mathrm{CMe}_{2}$, major), $1.08-2.12$ ($10 \mathrm{H}, \mathrm{m}$), 2.40-2.82 ($2 \mathrm{H}, \mathrm{m}$), 3.42 and 3.46 (each s, OCH_{2}, minor and major, respectively), 3.84 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}$), $6.84(2 \mathrm{H}$, d, $J 8 \mathrm{~Hz}, 3$ - and $5-\mathrm{ArH})$, and $7.10(2 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, 2$ - and $6-\mathrm{ArH})$.
trans- and cis-[2-(3-Isopropyl-4-methoxyphenethyl)-3,3dimethylcyclohexyl]methanol (9c).-The alcohol (9c) was obtained, as in the foregoing experiment, from the alkene (9b) in 96% yield, as an oil, as a ca. 1:3 epimeric mixture (${ }^{1} \mathrm{H}$ NMR), b.p. $170^{\circ} \mathrm{C}(0.02 \mathrm{mmHg})$ (Found: C, 79.4; H, 10.9. Calc. for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{2}$: C, 79.2; H, 10.8\%); $\mathrm{v}_{\text {max }} 3360 \mathrm{br}, \mathrm{cm}^{-1}(\mathrm{OH}) ; \delta 0.79$ and 0.89 (each $\mathrm{s}, \mathrm{CMe}_{2}$, minor epimer), 0.95 and 0.99 (each s , CMe_{2}, major), $1.20(6 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}, \mathrm{CHMe}$), $1.26-2.04(10 \mathrm{H}$, $\mathrm{m})$, 2.40-2.80 ($2 \mathrm{H}, \mathrm{m}$), $3.32\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}_{2}\right.$), 3.42 and 3.45 (each $\mathrm{s}, \mathrm{OCH}_{2}$, minor and major, respectively), $3.80(3 \mathrm{H}, \mathrm{s}$, ArOMe), 6.81 ($1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, 5-\mathrm{ArH}$), and 6.98-7.14 ($2 \mathrm{H}, \mathrm{m}, 2-$ and $6-\mathrm{ArH}$).
trans- and cis-Methyl 3,3-Dimethyl-2-phenethylcyclohexanecarboxylate (11a). The cooled alcohol (9a) (3 g, 12.2 mmol) in acetone (50 ml) was stirred with an excess of Jones reagent $(4.68 \mathrm{ml}, 12.5 \mathrm{mmol})$ for 45 min . After dilution with water, the mixture was extracted with ether. The ethereal extract was washed with 2% aqueous NaOH and then with water. The aqueous portion was acidified with 6 M HCl and usual work-up afforded the acid (10 a) ($1.87 \mathrm{~g}, 59 \%$) as a thick glass, $v_{\text {max }} 1700$ $\mathrm{cm}^{-1}\left(\mathrm{CO}_{2} \mathrm{H}\right)$. The acid (10a) was used directly in the next step.
The acid (10a) was esterified ($\mathrm{CH}_{2} \mathrm{~N}_{2}$ in ether) to afford (11a) as a ca. $1: 3$ epimeric mixture $\left({ }^{1} \mathrm{H}\right.$ NMR and GLC), b.p. $140{ }^{\circ} \mathrm{C}$ $(0.05 \mathrm{mmHg})$ (Found: C, $78.75 ; \mathrm{H}, 9.5$. Calc. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{2}: \mathrm{C}$, $78.8 ; \mathrm{H}, 9.55 \%$); $v_{\text {max. }} 1735 \mathrm{~cm}^{-1}$ (ester); $\delta 0.78$ and 0.89 (each s, CMe_{2}, minor epimer), 0.95 and 1.00 (each s, CMe_{2}, major), 1.08 $2.00(9 \mathrm{H}, \mathrm{m}), 2.20-2.90(3 \mathrm{H}, \mathrm{m}), 3.62$ and 3.70 (each s, $\mathrm{CO}_{2} \mathrm{Me}$, major and minor, respectively), and 7.04-7.60 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).
trans- and cis-2-(4-Methoxyphenethyl)-3,3-dimethylcyclohexanecarboxylic Acid (10b).-The acid (10b) was obtained from the alcohol (9b) on oxidation with Jones reagent, as in the foregoing experiment, in 71% yield as a crystalline solid, m.p. $126-128^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$-light petroleum) (Found: C, $74.15 ; \mathrm{H}$, 9.1. Calc. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3}$: C, $74.4 ; \mathrm{H}, 9.0 \%$); $v_{\max } 1700 \mathrm{~cm}^{-1}$ $\left(\mathrm{CO}_{2} \mathrm{H}\right)$.

The methyl ester (11b) obtained (ethereal $\mathrm{CH}_{2} \mathrm{~N}_{2}$) from (10b) was found to be a ca. 1:3 epimeric mixture (${ }^{1} \mathrm{H}$ NMR $)$, b.p. $140{ }^{\circ} \mathrm{C}(0.1 \mathrm{mmHg})$ (Found: $\mathrm{C}, 74.6 ; \mathrm{H}, 9.5$. Calc. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}$: C, $75.0 ; \mathrm{H}, 9.3 \%$); $v_{\text {max }} 1735 \mathrm{~cm}^{-1}$ (ester); $\delta(100 \mathrm{MHz}) 0.78$ and 0.86 (each $\mathrm{s}, \mathrm{CMe}_{2}$, minor epimer), 0.94 and 1.00 (each s, CMe_{2}, major), $1.08-1.86(9 \mathrm{H}, \mathrm{m}), 2.52\left(2 \mathrm{H}, \mathrm{t}, J 8 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 2.74$ (1 $\mathrm{H}, \mathrm{m}, \mathrm{CHCO}_{2} \mathrm{Me}$), 3.62 and 3.70 (each $\mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}$, major and minor, respectively), 3.74 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}$), $6.80(2 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, 3-$ and $5-\mathrm{ArH})$, and $7.04(2 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, 2$ - and $6-\mathrm{ArH})$.
trans- and cis-Methyl-2-(3-Isopropyl-4-methoxyphenethyl)-3,3-dimethylcyclohexanecarboxylate (11c).-The acid (10c) was obtained from the alcohol (9c), by oxidation with Jones reagent for 1.5 h , in 50% yield, as a viscous liquid, $v_{\text {max }} 1705 \mathrm{~cm}^{-1}$ $\left(\mathrm{CO}_{2} \mathrm{H}\right)$, and was used directly, in the next step.
The methyl ester (11c) obtained (ethereal $\mathrm{CH}_{2} \mathrm{~N}_{2}$) from (10c) was a ca. 1:3 epimeric mixture (${ }^{1} \mathrm{H}$ NMR), b.p. $158-160{ }^{\circ} \mathrm{C}$ $(0.02 \mathrm{mmHg})$ (Found: C, $76.45 ; \mathrm{H}, 10.2$. Calc. for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{3}: \mathrm{C}$, $76.3 ; \mathrm{H}, 9.9 \%$); $v_{\max } 1735 \mathrm{~cm}^{-1}$ (ester); $\delta 0.79$ and 0.91 (each s , CMe_{2}, minor epimer), 0.97 and 1.03 (each s, CMe_{2}, major), 1.21 ($6 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}, \mathrm{CH} M e_{2}$), $1.10-1.78(9 \mathrm{H}, \mathrm{m}), 2.51(2 \mathrm{H}, \mathrm{t}, J 8 \mathrm{~Hz}$, $\left.\mathrm{ArCH}_{2}\right), 2.68-2.88(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCO} 2 \mathrm{Me}), 3.34(1 \mathrm{H}, \mathrm{m}$, CHMe 2), 3.65 and 3.75 (each $\mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}$, major and minor, respectively), 3.79 ($3 \mathrm{H}, \mathrm{s}$, ArOMe), $6.78(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, 5-\mathrm{ArH}$), and 6.93-7.11 ($2 \mathrm{H}, \mathrm{m}, 2$-and 6-ArH).
cis-1,1-Dimethyl-1,2,3,4,4a,10,11,11a-octahydrodibenzo[a,d]-cyclohepten-5-one (12a) and its C-4a Epimer (13a).-To a well stirred homogeneous solution of PPA [prepared from $\mathrm{P}_{2} \mathrm{O}_{5}(21$ $\mathrm{g})$ and $\left.\mathrm{H}_{3} \mathrm{PO}_{4}(10.5 \mathrm{ml})\right]$ was added the acid (10a) $(1.75 \mathrm{~g}, 6.7$ mmol) and the mixture was heated at $80-85^{\circ} \mathrm{C}$ for 2 h . The red
mixture was cooled, decomposed with crushed ice, and extracted with ether. The ether extract was washed successively with water, 2% aqueous NaOH , and water, and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). Removal of the solvent afforded a solid stereoisomeric mixture of the ketones (12a) and (13a) in a ratio of $c a .82: 16\left(t_{\mathrm{R}} 4.15\right.$ and 3.2 min , respectively, at $220^{\circ} \mathrm{C}$) in 95% yield. Recrystallisaton afforded the pure major isomer (12a) $\left(1.3 \mathrm{~g}, 80 \%\right.$), m.p. $98{ }^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$-petroleum) (Found: C, 84.2; $\mathrm{H}, 9.4 . \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}$ requires C, $84.25 ; \mathrm{H}, 9.15 \%$); $v_{\text {max }} 1675 \mathrm{~cm}^{-1}$ (benzylic CO); $\lambda_{\text {max }}$ $247(\log \varepsilon 3.91)$ and $2.85 \mathrm{~nm}(3.18) ; \delta 0.94\left(6 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CMe}_{2}\right)$, $1.08-2.30(9 \mathrm{H}, \mathrm{m}), 2.60-3.40\left(3 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right.$ and COCH$), 7.12-$ $7.56(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $7.66(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{ArH})$.
cis-7-Methoxy-1,1-dimethyl-1,2,3,4,4a,10,11,11a-octahydro-dibenzo[a,d]cyclohepten-5-one (12b) and its C-4a-Epimer (13b). -The acid (10b) was cyclised as just described to afford a mixture of the ketones ($\mathbf{1 2 b}$) and (13 b) in a ratio of $c a .5: 1\left({ }^{1} \mathrm{H}\right.$ NMR) in 75% yield. Chromatography on neutral alumina (5$10 \% \mathrm{Et}_{2} \mathrm{O}$-petroleum) afforded the major isomer (12b) [55\% based on (10b)] as a crystalline solid, m.p. $70^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}-$ light petroleum) (Found: $\mathrm{C}, 79.6 ; \mathrm{H}, 9.0 . \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{2}$ requires C, $79.4 ; \mathrm{H}, 8.9 \%$); $v_{\text {max }} 1670 \mathrm{~cm}^{-1}$ (benzylic CO); $\lambda_{\text {max }} 311$ (log ε 3.44), 2.52 (3.82), and 222 nm (4.33); $\delta 0.97$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 0.98 (3 $\mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.28-1.88(8 \mathrm{H}, \mathrm{m}), 2.17(1 \mathrm{H}, \mathrm{m}), 2.76-3.22(3 \mathrm{H}, \mathrm{m}$, ArCH_{2} and COCH$), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}), 6.92(1 \mathrm{H}, \mathrm{dd}, J 8.3$ and $2.85 \mathrm{~Hz}, 8-\mathrm{ArH}$), $7.14(1 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, 9-\mathrm{ArH})$, and $7.24(1$ $\mathrm{H}, \mathrm{d}, J 2.85 \mathrm{~Hz}, 6$-ArH).
(\pm)-12-Methoxy- $9(10 \rightarrow 20)$-abeo-abieta-8,11,13-trien-20-one (13c) and its C-10-Epimer (12c).-The acid (10c) was cyclised as just described to afford, as a thick glass, in 69% yield, the ketones (12c) and (13c) as a ca. $4: 1$ stereoisomeric mixture (${ }^{1} \mathrm{H}$ NMR), b.p. $160{ }^{\circ} \mathrm{C}(0.02 \mathrm{mmHg})$ (Found: C, 80.5; H, 10.0 . $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{2}$ requires C, 80.2; $\mathrm{H}, 9.6 \%$); $v_{\max } 1675 \mathrm{~cm}^{-1}$ (benzylic CO); $\lambda_{\max } 312$ ($\log \varepsilon 3.57$), 263 (3.92), and $227 \mathrm{~nm}(4.21) ; \delta 0.98$ and 0.99 (each s, for CMe_{2}, both isomers), $1.19(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz})$ and $1.21(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz})\left(\mathrm{CH} M e_{2}\right), 1.35-2.28(8 \mathrm{H}, \mathrm{m}), 2.65-3.36$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}$ and COCH), $3.49\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}_{2}\right.$), 3.84 and 3.85 (each s, ArOMe, major and minor, respectively), $7.01(1 \mathrm{H}$, $\mathrm{s}, 9-\mathrm{ArH})$, and $7.21(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{ArH})$ [proton numbering as for (12/13a and b)].

1,1-Dimethyl-1,3,4,10,11,11a-hexahydro-2H-dibenzo[a,d]cycloheptene (15a). $-\mathrm{NaBH}_{4}(1.32 \mathrm{~g}, 0.036 \mathrm{~mol})$ was added portionwise to a stirred solution of the ketone mixture (12a) and (13a) (ca. $5: 1$) ($1.40 \mathrm{~g}, 6 \mathrm{mmol}$) in $95 \% \mathrm{EtOH}(50 \mathrm{ml})$. The mixture was left overnight and the excess of NaBH_{4} was decomposed with water. Work-up afforded the alcohol (14a) $(1.3 \mathrm{~g}, 92 \%)$ as a solid, as an epimeric mixture ($35: 65$; GLC and ${ }^{1} \mathrm{H}$ NMR); $v_{\text {max }} 3340 \mathrm{br} \mathrm{cm}^{-1}(\mathrm{OH}) ; \delta 0.70$ and 0.73 (each s, CMe_{2}, major isomer), 0.93 and 0.97 (each s, CMe_{2}, minor), $0.86-$ $1.90(8 \mathrm{H}, \mathrm{m}), 2.02-2.28(2 \mathrm{H}, \mathrm{m}), 2.66-2.90\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right)$, $4.66(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, \mathrm{CHOH}), 7.08-7.40(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and 7.54 ($1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 8 \mathrm{~Hz}, 6-\mathrm{ArH}$).
The alcohol (14a) ($1 \mathrm{~g}, 4.0 \mathrm{mmol}$) was fused with KHSO_{4} (1.1 $\mathrm{g}, 8.0 \mathrm{mmol}$) at $140^{\circ} \mathrm{C}$ for 40 min and the resulting mixture distilled to give the styrenoid compound ($\mathbf{1 5 a}$) $(840 \mathrm{mg}, 90 \%)$ as a low-melting solid, m.p. $44^{\circ} \mathrm{C}$ (from light petroleum) (Found: C , $90.0 ; \mathrm{H}, 10.0 \mathrm{C}_{17} \mathrm{H}_{22}$ requires C, $90.2 ; \mathrm{H}, 9.8 \%$) ; $v_{\max } 1635 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{C}) ; \lambda_{\max } 262(\log \varepsilon 4.27)$ and $211 \mathrm{~nm}(4.35) ; \delta 0.70(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 0.96(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.20-1.72(6 \mathrm{H}, \mathrm{m}), 2.10-2.20(3 \mathrm{H}, \mathrm{m})$, $2.64-2.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right), 6.40(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}=\mathrm{CH})$, and $7.10-$ 7.20 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

7-Methoxy-1,1-dimethyl-1,3,4,10,11,11a-hexahydro-2Hdibenzo $[\mathrm{a}, \mathrm{d}]$ cycloheptene $[(\pm)$-Deisopropyl-O-methylisopisiferin] (15b).-The ketone mixture (12b) and (13b) (ca. $5: 1)$ was reduced, as above, with NaBH_{4} to give the alcohol
(14b), in 66% yield, as a ca. $1: 1$ diastereoisomeric mixture (GLC and ${ }^{1} \mathrm{H} \mathrm{NMR}$); $v_{\text {max }} 3400 \mathrm{br} \mathrm{cm}^{-1}(\mathrm{OH})$. The alcohol (14b) so obtained was dehydrated, as in the case of (14a), to give the alkene (15b) in 89% yield as a liquid, b.p. $160^{\circ} \mathrm{C}(0.04 \mathrm{mmHg})$ (Found: C, 84.3; H, 9.8. $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}$ requires $\mathrm{C}, 84.3 ; \mathrm{H}, 9.4 \%$); $v_{\text {max }}$ $1640 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) ; \lambda_{\max } 298(\log \varepsilon 3.46)$ and $261 \mathrm{~nm}(4.13) ; \delta 0.70$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $0.98(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.24-1.80(6 \mathrm{H}, \mathrm{m}), 2.08-2.50(3 \mathrm{H}$, m), 2.52-2.74 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}$), 3.76 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}$), 6.34 (1 H , $\mathrm{s}, \mathrm{C}=\mathrm{CH}), 6.54-6.76(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{and} 8-\mathrm{ArH})$, and $6.94(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $J 8 \mathrm{~Hz}, 9-\mathrm{ArH}$).
(\pm)-12-Methoxy-9(10 $\rightarrow 20$)-abeo-abieta-10(20),8,11,13-tetraene $[(\pm)$-O-Methylisopisiferin] (15c).-The ketone mixture (12c) and (13c) (ca. 4:1) was reduced with NaBH_{4} to the diastereoisomeric alcohol mixture (14c) in 63% yield which, in turn, was dehydrated with KHSO_{4} to give the alkene (15c) in 93% yield, as a liquid, b.p. $150^{\circ} \mathrm{C}(0.05 \mathrm{mmHg})$ (Found: C, 84.3 ; $\mathrm{H}, 10.45 . \mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}$ requires $\mathrm{C}, 84.5 ; \mathrm{H}, 10.1 \%$); $v_{\max } 1640 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{C}) ; \lambda_{\text {max }} 290(\log \varepsilon 3.69), 265(4.15)$, and $220 \mathrm{~nm}(4.31) ; \delta 0.71$ ($3 \mathrm{H}, \mathrm{s}$) and $1.20(3 \mathrm{H}, \mathrm{s})$, $\left(\mathrm{CMe}_{2}\right)$, $1.17(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz})$ and $1.20(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz})\left(\mathrm{CH} M e_{2}\right), 1.34-1.74(6 \mathrm{H}, \mathrm{m}), 2.08-2.48$ ($3 \mathrm{H}, \mathrm{m}$), 2.60-2.74 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}$), $3.30\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}_{2}\right.$), $3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}), 6.31(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}=\mathrm{CH}), 6.61(1 \mathrm{H}, \mathrm{s}$, 6-ArH), and $6.83(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{ArH})$ [proton numbering as for (15a) and (15b)].

The Tetracyclic Dienone (17b)--(a) Demethylation of the styrenoid O-methyl ether ($\mathbf{1 5 b}$) with aluminium chlorideethanethiol. Anhydrous $\mathrm{AlCl}_{3}(30 \mathrm{mg}, 0.22 \mathrm{mmol})$ was added to a stirred solution of $(\mathbf{1 5 b})(50 \mathrm{mg}, 0.2 \mathrm{mmol})$ and EtSH $(0.2 \mathrm{ml})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$ with cooling in an ice bath. The mixture was stirred at $0^{\circ} \mathrm{C}$ for an additional 4 h and left overnight. It was then poured into 6 M HCl and extracted with ether to afford the crude dienone (17b). This was chromatographed on silica gel using ether-petroleum ($1: 5$ to $1: 4$) as eluant, to give the dienone (17 b) ($35 \mathrm{mg}, 75 \%$) as a thick liquid (Found: C, 84.5 ; H, 9.35 . $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}$ requires $\mathrm{C}, 84.25 ; \mathrm{H}, 9.15 \%$); $v_{\text {max }} 1655$ (dienone) and $1620 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) ; \lambda_{\text {max }} 259 \mathrm{~nm}(\log \varepsilon 4.02) ; \delta 0.97(3 \mathrm{H}$, s, Me), 1.05 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $1.08-2.12(13 \mathrm{H}, \mathrm{m}), 6.22(1 \mathrm{H}, \mathrm{dd}$, $J 9$ and $1 \mathrm{~Hz}, 13-\mathrm{H}), 6.25(1 \mathrm{H}, \mathrm{d}, J 1 \mathrm{~Hz}, 11-\mathrm{H})$, and $6.74(1 \mathrm{H}$, d, $J 9 \mathrm{~Hz}, 14-\mathrm{H}$).
(b) Demethylation of the alcohol (14b). The alcohol (14b) on similar treatment as above gave the dienone (17b) in 88% yield, identical (GLC, IR, ${ }^{1} \mathrm{H}$ NMR) with the sample obtained above.

The Tetracyclic Dienone (17c).-(a) Demethylation of (\pm)isopisiferin methyl ether (15c) with aluminium chloride-ethanethiol. The dienone (17c) was obtained as described for (17b) in 74% yield from the alkene (15c), as a solid, m.p. $107^{\circ} \mathrm{C}$ (from light petroleum) (lit., ${ }^{6}$ m.p. $107-109^{\circ} \mathrm{C}$); $v_{\max } 1655$ (dienone) $1620 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})\left(\right.$ lit., $\left.{ }^{6} v_{\max } 1655 \mathrm{~cm}^{-1}\right) ; \lambda_{\max } 255 \mathrm{~nm}(\log \varepsilon 5.10)$ [lit., $\left.{ }^{6} \lambda_{\text {max }}(\mathrm{EtOH}) 255 \mathrm{~nm}(\varepsilon 15300)\right] ; \delta 0.96(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.04(3$ $\mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.05(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz})$, and $1.07(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz})$ (CHMe $), 1.18-1.50(5 \mathrm{H}, \mathrm{m}), 1.58-1.90(7 \mathrm{H}, \mathrm{m}), 2.01(1 \mathrm{H}, \mathrm{t}, J 9$ Hz , methine), $\left.2.99(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe})_{2}\right), 6.23(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{H})$, and $6.40(1 \mathrm{H}, \mathrm{s}, 14-\mathrm{H})\left[\mathrm{lit}.{ }^{6}(90 \mathrm{MHz}) \delta\left(\mathrm{CDCl}_{3}\right) 0.95(3 \mathrm{H}, \mathrm{s})\right.$ and $\left.\left.1.03(3 \mathrm{H}, \mathrm{s})(\mathrm{CMe})_{2}\right), 1.06(6 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}, \mathrm{CHMe})_{2}\right), 2.98(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH} \mathrm{Me}_{2}$), $6.20(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{H})$, and $6.38(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 14-\mathrm{H})$].
(b) Demethylation of the alcohol (14c). The alcohol (14c) was similarly converted to the dienone (17 c) in 83% yield, m.p. and mixed m.p. with the sample just described $107^{\circ} \mathrm{C}$.
(\pm)-Deisopropylisopisiferin (1b)--EtSH ($0.17 \mathrm{ml}, 2.0 \mathrm{mmol}$)

[^0]was added dropwise to a stirred suspension of $\mathrm{NaH}(100 \mathrm{mg}$ of 40% dispersion in oil, 1.56 mmol) in dry DMF (2 ml) under N_{2}. The ether (15 b) $(50 \mathrm{mg}, 0.20 \mathrm{mmol})$ was added and the mixture was held at reflux for 4 h . Dilution with $\mathrm{H}_{2} \mathrm{O}$, acidification (2 M HCl), and extraction with ether gave (\pm)-deisopropylisopisiferin (1 b) ($30 \mathrm{mg}, 68 \%$) as a liquid, $v_{\max } 3400 \mathrm{br}$ (phenolic OH) and $1650 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) ; \delta 0.69(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.98(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, 1.12-1.80 ($6 \mathrm{H}, \mathrm{m}$), 2.14-2.76 ($5 \mathrm{H}, \mathrm{m}$), $6.26(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}), 6.52$ ($1 \mathrm{H}, \mathrm{dd}, J 2.5$ and $8 \mathrm{~Hz}, 8-\mathrm{ArH}), 6.61(1 \mathrm{H}, \mathrm{d}, J 2.5 \mathrm{~Hz}, 6-\mathrm{ArH}$), and $6.86(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, 9-\mathrm{ArH})$.

Acetate of (\pm)-Deisopropylisopisiferin (18b).—The phenol (1b) obtained in the foregoing experiment ($30 \mathrm{mg}, 0.12 \mathrm{mmol}$) was treated with pyridine (2 ml) and $\mathrm{Ac}_{2} \mathrm{O}(1 \mathrm{ml})$ and the mixture stirred overnight. Dilution with water and extraction with ether gave the acetate ($\mathbf{1 8 b}$) $(20 \mathrm{mg}, 57 \%)$, as a crystalline solid, m.p. $102{ }^{\circ} \mathrm{C}$ (from petroleum) (Found: C, 80.6; H, 8.2. $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{2}$ requires $\mathrm{C}, 80.2 ; \mathrm{H}, 8.5 \%$); $v_{\text {max }} 1755$ (phenolic ester) and $1210 \mathrm{~cm}^{-1}$ (acetate); $\lambda_{\text {max }} 262 \mathrm{~nm}(\log \varepsilon 4.26) ; \delta 0.69(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 0.98(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.20-1.72(6 \mathrm{H}, \mathrm{m}), 2.08-2.48(3 \mathrm{H}, \mathrm{m})$, 2.28 ($2 \mathrm{H}, \mathrm{s}, \mathrm{OCOMe}$), $2.72\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right.$), $6.29(1 \mathrm{H}, \mathrm{s}$, $\mathrm{C}=\mathrm{CH}), 6.74(1 \mathrm{H}$, dd, $J 2.25$ and $8.0 \mathrm{~Hz}, 8-\mathrm{ArH}), 6.83(1 \mathrm{H}, \mathrm{d}, J$ $2.25 \mathrm{~Hz}, 6-\mathrm{ArH})$, and $7.0(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, 9-\mathrm{ArH})$.
(\pm)-Isopisiferin Acetate (18c).-The methyl ether (15c) (60 $\mathrm{mg}, 0.20 \mathrm{mmol})$ was treated with EtSH $(0.18 \mathrm{ml}, 2.04 \mathrm{mmol})$ and $\mathrm{NaH}(100 \mathrm{mg}$ of 40% dispersion in oil, 1.7 mmol) in dry DMF (3 ml), as described in the preparation of (1b), to give the crude phenol (1 c) ($55 \mathrm{mg}, 95 \%$); $v_{\text {max }} 3380 \mathrm{br}$ (phenolic OH) and 1650 $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{C})$.
The phenol (1c) so obtained was acetylated directly to afford the acetate (18 c) as a white solid ($60 \mathrm{mg}, 95 \%$), m.p. $128^{\circ} \mathrm{C}$ (from petroleum), identical (IR and ${ }^{1} \mathrm{H}$ NMR) with natural isopisiferin acetate, m.p. $145-146^{\circ} \mathrm{C}$ * (Found: C, 80.8; H, 9.4. Calc. for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{O}_{2}: \mathrm{C}, 80.9 ; \mathrm{H}, 9.3 \%$); $\mathrm{v}_{\text {max }} 1755$ (phenolic ester) and $1210 \mathrm{~cm}^{-1}$ (acetate); $\lambda_{\text {max }} 266 \mathrm{~nm}(\log \varepsilon 4.30) ; \delta 0.70(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $0.98(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.17(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz})$ and $1.20(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz})$ (CHMe $)^{2}$, $1.16-1.74(4 \mathrm{H}, \mathrm{m}), 2.14-2.42(4 \mathrm{H}, \mathrm{m}), 2.29(3 \mathrm{H}, \mathrm{s}$, OCOMe), $2.54-2.72(3 \mathrm{H}, \mathrm{m}), 3.00(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}), 6.26(1 \mathrm{H}$, br s, $\mathrm{C}=\mathrm{CH}), 6.73(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{ArH})$, and $6.92(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{ArH})$ [proton numbering as for (15)].
(\pm)-Isopisiferin (1c).-The acetate (18c) ($40 \mathrm{mg}, 0.12 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$ was stirred at room temperature with LiAlH_{4} (20 mg) for 30 min ; decomposition with cold saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and extraction with $\mathrm{Et}_{2} \mathrm{O}$ gave (\pm)-isopisiferin (1c) (20 $\mathrm{mg}, 57 \%$), m.p. $116-118^{\circ} \mathrm{C}$ (lit., ${ }^{2}$ m.p. $87-90^{\circ} \mathrm{C}$ for naturally occurring optically active isopisiferin*); $v_{\max } 3520$ (phenolic OH), 1640 (weak) ($\mathrm{C}=\mathrm{C}$), and $1610 \mathrm{~cm}^{-1}$ (aromatic) [lit., ${ }^{2}$ $v_{\max }(\mathrm{KBr}) 3350$ and $\left.1610 \mathrm{~cm}^{-1}\right] ; \lambda_{\max } 222(\varepsilon 19500), 264$ (12590), 301 (3981), and 312 nm (shoulder) [lit., ${ }^{2} \lambda_{\max }(\mathrm{EtOH})$ 262 ($\varepsilon 11083$), 299 (3307), and 310 nm (shoulder)]; $\delta 0.70(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Me}), 0.98(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.22(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz})$ and $1.25(3 \mathrm{H}, \mathrm{d}$, $J 7 \mathrm{~Hz}$), (CHMe 2), 1.34-1.70 (4 H, m), 2.14-2.40 (4 H, m), 2.56$2.72(3 \mathrm{H}, \mathrm{m}), 3.16\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}_{2}\right), 6.22(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}=\mathrm{CH})$, $6.51(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{ArH})$, and $6.82(1 \mathrm{H}, \mathrm{s}, 14-\mathrm{ArH})$ [lit., ${ }^{2}{ }^{1} \mathrm{H}$ NMR $(100 \mathrm{MHz}) \delta\left(\mathrm{CDCl}_{3}\right) 0.68(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.93(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.20$ and 1.23 (each d, $J 7 \mathrm{~Hz}, \mathrm{CH} M e_{2}$), $2.20(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.62(2 \mathrm{H}, \mathrm{m}, 7-$ H), $3.13\left(1 \mathrm{H}\right.$, sept, $J 7 \mathrm{~Hz}, \mathrm{CH} \mathrm{Me}_{2}$), $6.17(1 \mathrm{H}$, br s, $\mathrm{C}=\mathrm{CH}$), 6.43 ($1 \mathrm{H}, \mathrm{s}, 11-\mathrm{ArH}$), and $6.77(1 \mathrm{H}, \mathrm{s}, 14-\mathrm{ArH})]$. The discrepancies between our data and those reported ${ }^{2}$ could arise from impurities, or could be instrumental artefacts.

Acknowledgements

The C.S.I.R., New Delhi, is gratefully acknowledged for the award of an associateship to G. B.

References

1 Part 17, B. K. Banik and U. R. Ghatak, Tetrahedron, 1989, 45, 3547.
2 S. Hasegawa, Y. Hirose, M. Yatagai, and T. Takahashi, Chem. Lett., 1984, 1837.
3 S. Hasegawa, T. Kojima, and Y. Hirose, Phytochemistry, 1985, 24, 1545.

4 M. Yatagai and T. Takahashi, Phytochemistry, 1980, 19, 1149.
5 A. Kelecom, Tetrahedron, 1983, 39, 3603.
6 T. Matsumoto, S. Imai, T. Yoshinari, and S. Maisuno, Bull. Chem. Soc. Jpn., 1986, 59, 3103.
7 E. R. Koft, Tetrahedron, 1987, 43, 5775.
8 (a) B. K. Banik, A. K. Chakraborti, and U. R. Ghatak, J. Chem. Research, 1986, (S), 406; (M), 3391; (b) B. K. Banik, S. Ghosh, and U. R. Ghatak, Tetrahedron, 1988, 44, 6947.

9 U. R. Ghatak, S. K. Alam, and J. K. Ray, J. Org. Chem., 1978, 43, 4598. 10 D. Nasipuri and M. Guha, J. Chem. Soc., 1962, 4248.
11 (a) J. M. Conia and J. C. Limasset, Bull. Soc. Chim. Fr., 1967, 6, 1936;
(b) R. P. Short, J.-M. Revol, B. C. Ranu, and T. Hudlicky, J. Org. Chem., 1983, 48, 4453.
12 H. O. House, W. E. Hanners, and E. J. Racah, J. Org. Chem., 1972, 37, 985.

13 A. Bowers, T. G. Halsall, E. R. H. Jones, and A. J. Lemin, J. Chem. Soc., 1953, 2548.
14 A. Chatterjee, D. Banerjee, and R. Mallik, Tetrahedron, 1977, 33, 85. 15 M. V. Bhatt and J. R. Babu, Tetrahedron Lett., 1984, 25, 3497.
16 M. Node, K. Nishide, M. Sai, K. Ichikawa, K. Fuji, and E. Fujita, Chem. Lett., 1979, 97.
17 W. S. Murphy and S. Wattanasin, Chem. Soc. Rev., 1983, 12, 213.
18 G. I. Feutrill and R. N. Mirrington, Tetrahedron Lett., 1970, 1327.

[^0]: * We thank Professor S. Hasegawa, Science University of Tokyo, Japan, for a generous sample of (18c) and UV, IR, and ${ }^{1} \mathrm{H}$ NMR spectra of natural isopisiferin (1c).

